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Abstract: The (unheralded) first step in many applications of automated text analysis involves selecting keywords to choose
documents from a large text corpus for further study. Although all substantive results depend on this choice, researchers
usually pick keywords in ad hoc ways that are far from optimal and usually biased. Most seem to think that keyword
selection is easy, since they do Google searches every day, but we demonstrate that humans perform exceedingly poorly at
this basic task. We offer a better approach, one that also can help with following conversations where participants rapidly
innovate language to evade authorities, seek political advantage, or express creativity; generic web searching; eDiscovery;
look-alike modeling; industry and intelligence analysis; and sentiment and topic analysis. We develop a computer-assisted
(as opposed to fully automated or human-only) statistical approach that suggests keywords from available text without
needing structured data as inputs. This framing poses the statistical problem in a new way, which leads to a widely applicable
algorithm. Our specific approach is based on training classifiers, extracting information from (rather than correcting) their
mistakes, and summarizing results with easy-to-understand Boolean search strings. We illustrate how the technique works
with analyses of English texts about the Boston Marathon bombings, Chinese social media posts designed to evade censorship,
and others.

Replication Materials: The data, code, and any additional materials required to replicate all analyses in this
article are available on the American Journal of Political Science Dataverse within the Harvard Dataverse, at:
http://doi:10.7910/DVN/FMJDCD.

Boolean keyword search of textual documents is
a generic task used in numerous methods and
application areas. Sometimes researchers seek one

or a small number of the most relevant documents, a use
case we call fact finding and for which Google, Bing, and
other search engines were designed. For example, to find
the capital of Montana, a weather forecast, or the latest
news about the president, the user only wants one site (or
a small number of sites) returned. In the second collecting
use case, which we focus on, researchers do not try to find
the needle in the haystack, at least at first; instead, they
seek all documents that describe a particular literature,
topic, person, sentiment, event, or concept.

Collecting is typically performed by attempting to
think of all keywords that represent a specific concept,
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and selecting documents that mention one or more of
these keywords. Yet, this keywords selection process is
known to be a “near-impossible task” for a human being
(Hayes and Weinstein 1990), which we demonstrate can
greatly bias inferences. Although no researchers should be
selecting keywords for this purpose on their own, many
applications require keywords. For example, applications
of sophisticated methods of automated text analysis, de-
signed to get around simplistic keyword matching and
counting methods, are often preceded by selecting key-
words to narrow all available documents to a manage-
able set for further analysis. Similarly, search engines are
optimized for fact finding, but regularly used for collect-
ing, even though they are suboptimal for this alterna-
tive purpose. Indeed, as we discuss in the third section
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(“The Unreliability of Human Keyword Selection”), hu-
man brains have well-studied inhibitory processes that,
although adaptive for other reasons, explicitly prevent us
from recalling many keywords when needed for the task
of collecting.1

The problem of keyword discovery is easier when
structured data are available to supplement the raw
text, such as search query logs (e.g., Google’s AdWords
Keyword Tool, or Overture’s Keyword Selection Tool),
databases of meta-tags, or web logs (Chen, Xue, and Yu
2008), and a large literature of methods of “keyword
expansion or suggestion” has arisen to exploit such infor-
mation. In this article, we develop methods for the wide
array of problems for which raw text is the sole, or most
important, source of information. To avoid requiring a
human user having to think of all relevant keywords, we
introduce methods of computer-assisted keyword discov-
ery. Our key motivating principle is that although humans
perform very poorly in the task of recalling large numbers
of words from memory, they excel at recognizing whether
any given word is an appropriate representation of a given
concept.

We begin by describing some of the application ar-
eas to which our methodology may provide some assis-
tance. We then conduct an experiment that illustrates
the remarkable unreliability of human users in select-
ing appropriate keywords. Next, we define the statisti-
cal problem we seek to solve, along with our notation.
We then present our algorithm, several ways of evalu-
ating it, and an illustration of how it works in practice.
Lastly, we discuss related prior literature and conclude.
The appendices give details on algorithm robustness and
how to build queries for much larger data sets. Replica-
tion information is available at King, Lam and Roberts
(2016).

Application Areas

Algorithms that meet the requirements of the statistical
problem as framed in the fourth section suggest many new
areas of application. We list some here, all of which the
algorithm we introduce below may help advance. Some
of these areas overlap to a degree, but we present them
separately to highlight the different areas from which the
use of this algorithm may arise.

1Some algorithms have been proposed and implemented on search
engines to provide assistance for collecting, but the approaches are
based on methods of fully automated cluster analysis that perform
poorly on most general problems (Grimmer and King 2011).

Conversational Drift

Political scientists, lobby groups, newspapers, interested
citizens, and others often follow social media discussions
on a chosen topic but risk losing the thread of the conver-
sation, and the bulk of the discussion, when changes occur
in how others refer to the topic. Some of these wording
changes are playful or creative flourishes; others represent
political moves to influence the debate or frame the issues.
For example, what was once called “gay marriage” is now
frequently referred to by supporters as “marriage equal-
ity.” Progressive groups try to change the discussion of
abortion policy from “pro-choice” and “pro-life,” where
the division is approximately balanced, to “reproductive
rights,” where they have a large majority. Conservatives
try to influence the debate by relabeling “late-term abor-
tion” as “partial-birth abortion,” which is much less pop-
ular. As these examples show, selecting an incomplete set
of keywords can result in severe selection bias because of
their correlation with the opinions of interest.

Evading the Censors

Internet censorship exists in almost all countries to some
degree. Governments and social media firms that op-
erate within their jurisdictions use techniques, such as
keyword-based blocking, content filtering, and search fil-
tering, to monitor and selectively prune certain types of
online content (Yang 2009). Even in developed countries,
commercial firms routinely “moderate” product review
forums, and governments require the removal of “ille-
gal” material such as child pornography. In response to
these information controls, netizens continually try to
evade censorship with alternative phrasings. For exam-
ple, immediately after the Chinese government arrested
artist-dissident Ai Weiwei, many social media websites
began censoring the Chinese word for Ai Weiwei (King,
Pan, and Roberts 2013); soon after, netizens responded
by referring to the same person as “AWW” and the Chi-
nese word for “love,” which in Chinese sounds like the
“ai” in “Ai Weiwei.” Other creative censorship avoidance
techniques involve using homographs and homophones.

Starting Point for Statistical Analyses of Text

Most methods of automated text analysis assume the exis-
tence of a set of documents in a well-defined corpus in or-
der to begin their analysis. They then spend most of their
effort on applying sophisticated statistical, machine learn-
ing, linguistic, or data-analytic methods to this given cor-
pus. In practice, this corpus is defined in one of a variety
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of ways, but keyword searching is a common approach
(e.g., Eshbaugh-Soha 2010; Gentzkow and Shapiro 2010;
Ho and Quinn 2008; Hopkins and King 2010; King, Pan,
and Roberts 2013; Puglisi and Snyder 2011). In this com-
mon situation, our algorithm should help improve the
inputs to, and thus the results from, any one of these so-
phisticated approaches. The same issue applies for simple
analysis methods, such as keyword counting.

Intuitive and Infinitely Improvable
Classification

Because statistical classifiers are typically far from perfect
(Hand 2006), ordinary users who find individual doc-
uments misclassified may question the veracity of the
whole approach. Moreover, since most classifiers opti-
mize a global function of the data set, even sophisticated
users may find of value hybrid approaches for adding
human effort and knowledge to improve classification
at the level of smaller numbers of documents. In this
situation, keyword-based classifiers are sometimes more
useful because the reasons for mistakes, even if there are
more of them, are readily understandable and easily fix-
able (by adding or removing keywords from the selection
list) for a human user (Letham et al. 2015). Keyword clas-
sifiers are also much faster than statistical classifiers and
can be improved to any higher level of accuracy, with
sufficient effort, by continual refinement of the Boolean
query.

Online Advertising

Academics recruiting study participants often bid for ad
space next to searches for chosen keywords (Antoun et al.
2015), just as firms do in advertising campaigns. This is
common with Google Adwords, Bing Ads, Facebook, and
so on. These systems, and other existing approaches, sug-
gest new keywords to those spending advertising dollars
by mining information from structured data such as web
searches, weblogs from specific websites, or other ad pur-
chases. Our approach can supplement these existing ap-
proaches by mining keywords relevant to the population
of interest from raw unstructured text found in research
documents, literature reviews, or information in private
companies such as customer call logs, product reviews,
websites, or a diverse array of other sources. Whereas
keywords (or more general Boolean searches) for adver-
tising on search engines can be mined from search engine
query logs, or website logs, keywords that identify rarely
visited pages, or for advertising on social media sites, can
only be mined from the unstructured text.

Long Tail Search

Modern search engines work best when prior searches
and the resulting structured metadata on user behavior
(e.g., clicking on one of the websites offered or not) are
available to continuously improve search results. How-
ever, in some areas, such metadata are inadequate or un-
available, and keywords must be discovered from the text
alone. These include (1) traditional search with unique
or unusual search terms (the “long tail”); (2) search-
ing on social media, where most searches are for posts
that just appeared or are just about to appear, and so
have few previous visits; and (3) enterprise search for
(confidential or proprietary) documents that have rarely
if ever been searched for before. In these situations, it
may be useful to switch from the present fully auto-
mated searching to computer-assisted searching using our
technology.

Consider social search. During the Boston Marathon
bombings, many followed the conversation on Twitter
by searching for #BostonBombings, but at some point
the social media Boston authors expressed community
spirit by switching to #BostonStrong and out-of-towners
used #PrayForBoston. Since guessing these new keywords
is nearly impossible, those who did not notice the switch
lost the thread of the conversation.

The Unreliability of Human Keyword
Selection

Human beings, unaided by computers, seem to have no
problem coming up with some keywords to enter into
search engines (even if not the optimal ones). Everyone is
accustomed to doing Google searches, after all. However,
as we demonstrate in this section, for the more compli-
cated task of choosing a set of keywords for the task of
collection, even expert human users perform extremely
poorly and are highly unreliable at this task. That is, two
human users familiar with the subject area, given the same
task, usually select keyword lists that overlap very little,
and the list from each is a very small subset of those they
would each recognize as useful after the fact. The unreli-
ability is exacerbated by the fact that users may not even
be aware of many of the keywords that could be used to
select a set of documents. And attempting to find key-
words by reading large numbers of documents is likely
to be logistically infeasible in a reasonable amount of
time.

Here, we first demonstrate this surprising result
with a simple experiment. Second, because this result
is counterintuitive ex ante, we briefly summarize the
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well-developed psychological literature that can be used
to explain results like this. And finally, we show the severe
statistical bias (or extra ex ante variance) that can re-
sult from selecting documents with inadequate keyword
lists.

Experiment

For our experiment, we asked 43 relatively sophisticated
individuals (mostly undergraduate political science ma-
jors at a highly selective college) to recall keywords with
this prompt:

We have 10,000 twitter posts, each containing
the word “healthcare,” from the time period sur-
rounding the Supreme Court decision on Oba-
macare. Please list any keywords which come to
mind that will select posts in this set related
to Obamacare and will not select posts unrelated
to Obamacare.

We also gave our subjects access to a sample of the posts
and asked them not to consult other sources. We re-
peated the experiment with an example about the Boston
Marathon bombings.

The median number of words selected by our re-
spondents was 8 for the Obamacare example and 7 for
the experiment about the Boston Marathon bombings.
In Figure 1, we summarize our results with word clouds
of the specific keywords selected. Keywords selected by
one respondent and not by anyone else are colored red
(or gray if reading black and white). The position of any
one word within the cloud is arbitrary.

The results clearly demonstrate the remarkably high
level of unreliability of our human keyword selectors. In
the Obamacare example, 149 unique words were recalled
by at least one of our 43 respondents. Yet, for 66% of those
words, every single one of the remaining 42 respondents,
when given the chance, failed to recall the same word
(Figure 1, red or gray words in the left panel). In the
Boston Marathon bombing example, the percentage of
words recalled by a single respondent was 59% (right
panel). The level of unreliability was so high that no two
users recalled the same entire keyword list.

This extreme level of unreliability is not due to
our research subjects’ being unaware of some of the
words. Indeed, after the fact, it is easy to see from
Figure 1 that almost all the words recalled are rec-
ognizably related to Obamacare or the Boston bomb-
ings, respectively. In other words, although humans per-
form extremely poorly at recall, they are excellent at
remembering.

Psychological Foundation

The counterintuitive result from our experiment is related
to, and can be explained by, psychological research on “in-
hibitory processes” (and in particular, “part-list cuing”).
The well-supported finding, from many experiments, is
that revealing one word to the research subject facilitates
remembering others, but the cue provided by revealing
more than a few words strongly inhibits recall of the rest of
the set, even though you would recognize them if revealed
(Bauml 2008; Roediger and Neely 1982).

Why our brains would be constructed to stop us from
remembering needed information deserves at least some
speculation. One way to think about this is imagining
memory as a network diagram with concepts represented
as nodes, and connections between concepts represented
as edges. Without inhibitory processes, activating any one
concept by recall would activate all concepts connected to
it, and all those connected to those, and so on (e.g., orange
activates apple, apple activates banana, banana activates
slip, slip activates. . .). Millions of concepts would come
flowing into your comparatively tiny, short-term working
memory and, unable to handle it all, you would likely be
overwhelmed and perhaps unable to think at all. So either
working memory would need to be much bigger, which
does not seem to be on offer, or inhibitory processes are
necessary.2

Consequences for Statistical Bias

As is well known, the choice of a data selection rule, such
as that defined by the choice of keywords, is only guar-
anteed to avoid bias if it is independent of the variables
used to analyze the chosen document set. Obviously, this
is a strong assumption, unlikely to hold in many applia-
tions, especially when using unreliable (i.e., human-only)
methods of keyword selection. In other words, different
keyword lists generate different document sets, which, in
turn, can lead to dramatically different inferences, sub-
stantive conclusions, and biases.

2We can make this strange result somewhat more plausible by
turning on an inhibitory process in your brain right now: Think of
your bank password. Now think of your previous bank password.
Assuming you listen to your bank and do not rotate them, now think
of your bank password before that. Likely you cannot remember
that one, but if someone showed it to you, we think you would
agree that it would be easy for you to recognize it as correct. If so,
then we have shown that the memory of that third password exists
in your brain, even though something is causing you to not be able
to access it. An example of inhibitory processes at work may even
be the feeling that a thought you are having trouble remembering
is “on the tip of your tongue”: It is stored in your brain, but you
cannot access it.
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FIGURE 1 The Unreliability of Human Keyword Selection
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Note: Word clouds of keywords were selected by human users; those selected by one and only one respondent are in
red (or gray if printed in black and white). The position of each word within the cloud is arbitrary.

We now demonstrate these biases in an analysis of the
data from our Boston Marathon bombings experiment.
We study the well-known tendency for communities suf-
fering a tragedy to turn public discourse from the obvious
negative events into positive expressions based on solidar-
ity, community spirit, and individual heroics. To do this,
we use a simple, but still very common, analysis mea-
sure (Nielsen 2011). The idea is to code each word in a
social media post as having negative (−1), neutral (0),
or positive (+1) sentiment (based on a fixed dictionary
designed for Twitter) and to sum all the words in a post to
give the final sentiment for that tweet. We use this method
to compute the average sentiment of all tweets retrieved
by each of the 43 keyword lists from our 43 subjects. The
point estimates (dots) along with 95% confidence inter-
vals (horizontal lines) for each appear in Figure 2, sorted
from negative to positive sentiment.

The results vividly demonstrate the substantial effect
the choice of a keyword list has on the sentiment of the
document sets chosen by different research subjects given
the identical prompt. Choosing some of the lists (on the
bottom left) would lead a researcher to the conclusion
that social media discourse was extremely negative dur-
ing the month following the Boston Marathon bombing.
If, instead, one were to choose other keyword sets (which
appear in the middle of the graph), a researcher could re-
port “evidence” that sentiment was only slightly negative.
Alternatively, a researcher who used one of the keyword

lists from the top right would be led to the conclusion that
sentiment was relatively positive (by selecting documents
that reflected expressions of community spirit). As is ev-
ident, almost any substantive conclusion can be drawn
from these data by changing choice of the keyword list.
This example clearly demonstrates the value of paying far
more attention to how keyword lists are selected than has
been the case in the literature.

Defining the Statistical Problem
Notation

We define the reference set, R, to be a set of textual docu-
ments, all of which are examples of a single chosen concept
of interest (e.g., topic, sentiment, idea, person, organiza-
tion, event). This set is defined narrowly so that the prob-
ability of documents being included that do not represent
this concept is negligible. The reference set need not be a
random or representative sample of all documents about
the concept of interest (if such a process could even be
defined), and may even reflect a subset of emphases or
aspects of the concept (as was common for individual
humans in the previous section).

Also define the search set, S, as a set of documents
selected because it likely has additional documents of
interest, as well as many others not of interest. The search
set does not overlap the reference set, R ∩ S = ∅. Our
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FIGURE 2 Average Sentiment of 43 Document Sets
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Note: Each document set was selected by a different keyword list, with point
estimates (as dots) and 95% confidence intervals (horizontal lines) shown.

goal is to identify a target set, T , which is the subset
of the search set (T ⊂ S) containing documents with
new examples of the concept defining documents in the
reference set. Ultimately, we are interested in T ∪ R, but,
since we have R, the statistical task is to find T in S.

In practice, the reference set may be defined by choos-
ing individual documents by hand, selecting an existing
corpus, or using all available documents that contain text
matching a specific Boolean query, Q R (defined as a string
containing user-defined keywords and Boolean opera-
tors, AND, OR, NOT, such that R = {d : Q R}, for any
document d under consideration). The search set can be
defined as all websites on the Internet (after removing
documents in R), all available documents, a different se-
lected existing corpus, or documents that match a Boolean
query, QS (such that S = {d : QS}). The elements of a
Boolean query are “keywords.”3

3The simplest versions of keywords are unigrams, but they could
also include higher-order n-grams, phrases, or any type of Boolean
query. Common steps in automated text analysis, such as making
all letters lowercase or stemming, can broaden the words that a
single keyword will match (e.g., “consist” would then match “con-
sist” as well as “Consist,” “consistency,” “Consisted,” “CONSIST-
ING,” etc.). Other standard text-analytic preprocessing steps would

An Unsupervised Statistical Problem

The statistical task of finding T is “unsupervised” in that
the concept defining the reference and target sets may
be broadened by the human user on the fly as part of
the process of discovery (rather than, as in “supervised”
analyses, T being a fixed quantity to be estimated). We
thus seek to identify the target set T by first finding KT , the
set of all keywords in T ranked by likely relationships with
the concept. We then use human input in specific ways to
craft query QT , intended to retrieve T from S. Depending
on the application, users may also be interested in the set
of all keywords in the reference set K R , the target and
reference sets together T ∪ R, a query that returns both
the reference and target sets together Q RT , or all of the
above.

Our algorithm is human-led and computer-assisted
rather than fully automated; it is related to semi-
supervised learning (Zhu and Goldberg 2009). The more
common fully automated approaches to document re-
trieval (e.g., spam filters) use statistical or machine learn-
ing classifiers that are viewed as a black box to the user.

remove words from the possible list of keywords, such as by remov-
ing stopwords or other very common words or very short words.
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By restricting ourselves to a simple Boolean search, de-
fined by a set of interpretable keywords, we empower
users to control, understand, and continually improve
the retrieval process.

Another reason for the choice of a human-powered
approach is that the concept that the documents in the
reference set share, and for which we seek a target set,
is not a well-defined mathematical entity. Human lan-
guage and conceptual definitions are rarely so unam-
biguous. For example, any two nonidentical documents
could be regarded as the same (they are both documents),
completely unrelated (since whatever difference they have
may be crucial), or anything in between. Only additional
information about the context (available to the person
but not available solely from the data set) can informa-
tively resolve this indeterminacy. To take a simple exam-
ple, suppose one element of K R is the keyword “sandy.”
Should the target set include documents related to a hurri-
cane that devastated New Jersey, a congresswoman from
Florida, a congressman from Michigan, a cookie made
with chopped pecans, a type of beach, a hair color, a five-
letter word, or something else? To make matters worse,
it could easily be the case that documents in the refer-
ence set represent two of seven of these examples, but
two others in the search set are of interest to the human
user. Of course, a user can always define the reference
set more precisely to avoid this problem, but the na-
ture of language means that some ambiguity will always
remain. Thus, we use human input, with information
from the text presented to the human user in a man-
ner that is easily and quickly understood, to break this
indeterminacy and grow the reference set in the desired
direction.

Algorithm

The algorithm first partitions S into two groups by clas-
sifying whether a document belongs in set T or its com-
plement, S \ T . It mines S for all keywords K S and then
ranks keywords by how well they discriminate between T
and S \ T . This results in two lists of keywords KT and
K S\T ranked in order of how well they discriminate each
set from the other. The keyword lists themselves are often
of interest to users who would like keyword recommen-
dations for various uses. For document retrieval, the user
would iterate through the two lists to produce a query
QT that, when combined with the reference query Q R to
form Q RT , best retrieves his or her desired document set
of interest.

Table 1 gives a brief overview of the specific steps in
our proposed algorithm.

TABLE 1 The Keyword Algorithm

1. Define a reference set R and search set S.
2. Using a diverse set of classifiers, partition all

documents in S into two groups: T and S \ T , as
follows:

(a) Define a training set by drawing a random
sample from R and S.

(b) Fit one or more classifiers to the training set
using as the outcome whether each document
is in R or S.

(c) Use parameters from classifiers fit to the
training set to estimate the predicted
probability of R membership for each
document in S. (Of course, every document is
in S, and so the prediction mistakes can be
highly informative.)

(d) Aggregate predicted probabilities or
classifications into a single score (indicating
probability of membership in T) for each
document in S.

(e) Partition S into T and S \ T based on the
score for each document and a user-chosen
threshold.

3. Find keywords that best classify documents into
either T or S \ T , as follows:

(a) Generate a set of potential keywords by mining
S for all words that occur above a chosen
frequency threshold, K S .

(b) Decide whether each keyword k ∈ K S

characterizes T or S \ T better, by comparing
the proportion of documents containing k in
T with the proportion of documents
containing k in S \ T .

(c) Rank keywords characterizing T by a statistical
likelihood score that measures how well the
keyword discriminates T from S \ T . Do the
analogous ranking for keywords characterizing
S \ T .

4. Present keywords in two lists to the user, to iterate
and choose words of interest or for use in
building a document retrieval query.

5. If sufficient computational power is available,
rerun Steps 1–4 every time the user makes a
measurable decision, such as adding a keyword to
QT to improve the lists of keywords to consider.

Note: The table displays a simple version of our algorithm, used
in illustrations below. The algorithm also has numerous possible
extensions, such as generating phrases or higher-order n-grams,
clustering the documents in various different ways, redefining the
reference set after the user chooses a keyword, and iterating between
user input and the algorithm.
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Incrementally Defining R and S

The simplest application of our algorithm has R and
S defined at the outset, but alternatives are often eas-
ier in practice. For example, one may begin with a large
document set and without any immediately obvious dis-
tinction between the two sets. This situation is common
with large, continuously streaming, or even ill-defined
data, such as being based on the entire Internet, all social
media posts, or all documents narrowed by a set of very
broad keywords. In this situation, we can define S and R
adaptively, as part of the algorithm (e.g., D’Orazio et al.
2014).

Consider the following alternative adaptive strategy.
The user begins by defining R narrowly based on one
simple keyword search, as a subset of the existing corpus.
We then add an intermediate step to the algorithm, which
involves mining and displaying a list of keywords found in
R, K R , ranked by a simple statistic such as document fre-
quency or term frequency–inverse document frequency.
The user then examines elements of K R (aside from those
used to define the set) and chooses some keywords to de-
fine QS , which in turn generates a definition for S, so that
we can run the rest of the algorithm. The user can then
continue to add keywords from K R into the final desired
query Q RT . In this workflow, S can be neither predefined
nor retrieved ex ante. This step also mitigates the issue of
how to define a search set in large data sets that do not
fit into memory all at once or may not even be able to
be retrieved all at once. It also leverages additional infor-
mation from R in the form of keywords likely to identify
additional aspects of the concept and keywords the user
may not have thought of for defining both R and S.

Partitioning S into T and S \ T

To partition S into T and S \ T , we first we define a
“training” set by sampling from S and R. We can repeat
this step with different random subsettings to increase the
diversity of keyword candidates that are surfaced. (Exem-
plars can substitute for random sampling as well.) Since
R is typically much smaller than S and our test set for
our classifiers is all of S, we often use the entire R set and
a sample of S as our training set.

Next, we fit classifiers to the training set, using each
document’s actual membership in R or S as the outcome
variable. As predictors, we use any element of the text of
the documents, as well as any available metadata. Any set
of statistical, machine learning, or data-analytic classifiers
can be used, but we recommend using as large and diverse
a set of methods as is convenient and computationally fea-
sible (e.g., Bishop 1995; Hastie, Tibshirani, and Friedman

TABLE 2 Classification Sets

Classified

Search Reference

Truth Search {S|S} {R|S}
Reference {S|R} {R|R}

Note: Classification sets are shown, where {a|b} is the set of docu-
ments in set b classified into set a ; S is the search set, and R is the
reference set.

2009; Kulkarni, Lugosi, and Venkatesh 1998; Schapire and
Freund 2012).

After fitting the classifiers, we use the estimated pa-
rameters to generate predicted probabilities of R mem-
bership for all documents in S. Of course, all the search
set documents in fact fall within S, but our interest is in
learning from the mistakes these classifiers make.

Although we do not need to transform the probabil-
ities into discrete classification decisions for subsequent
steps in the algorithm, we provide intuition into these
mistakes by doing this now. Table 2 portrays the results for
one example classifier, with the originally defined truth
in rows and potential classifier decisions in columns. We
will typically be interested in documents from the search
set, (mis)classified into the reference set, {R|S}. The idea
is to exploit these mistakes since documents in this set will
reveal similarities to the reference set, and so they likely
contain new keywords we can harvest to better represent
the concept of interest.4

Once we have predicted probabilities of R member-
ship for each document in S from the classifiers, we need
to turn these into a single T membership “score” for the
purpose of grouping documents. For a single classifier, the
predicted probability of R membership from S is the pre-
dicted probability of T membership. In most situations,
we recommend the use of multiple classifiers, so that we
can extract their different “opinions” about in which set
individual documents belong. The different classifiers will
typically pick up on different aspects of the concept and
thus highlight different keywords for the user to choose
from. To ensure that this diversity of opinion is reflected
in our keyword lists, we aggregate the probabilities across
classifiers for a single document by taking the maximum

4Other groups defined by the classifier in Table 2 may also be
useful. For example, the documents {S|S} contain keywords in the
search set, classified into the search set, and so could be useful for
identifying keywords to avoid when defining a topic of interest;
in a Boolean query, these could be used with NOT. Similarly, the
documents {R|R} can reveal keywords that select documents in
the reference group. These can be used to refine the definition of
the reference or search data sets. We also use these documents for
model checking and for tuning in our classifiers.
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probability across the classifiers as the membership score
(i.e., rather than the usual approach of using the average
or plurality vote). We then use this score to group doc-
uments into T and S \ T . Our simple aggregation rule
thus boils down to placing all documents with at least
one classifier “vote.”

Discovering Keywords to Classify
Documents

After partitioning S into our estimated target set T and
nontarget set S \ T , we must find and rank keywords that
best discriminate T and S \ T . We do this in three steps:
(a) mine all keywords from S (perhaps limiting our list to
those that meet thresholds such as a minimum document
frequency of five documents), (b) sort them into those
that predict each of the two sets, and (c) rank them by
degree of discriminatory power.

Step (a) is accomplished by merely identifying all
unique keywords in S. This is a simple step for our com-
puter algorithm, but it is important in practice since a
human who thinks of a word not in any documents in S
will be useless, no matter how compelling the word seems
to be.

For Step (b), we use the proportion of documents
in which each keyword appears at least once. For exam-
ple, if a keyword appears in 5 out of 10 T documents
and 15 out of 50 S \ T documents, we put that key-
word into the T list since it appears in 50% of T docu-
ments and 30% of S \ T documents, despite the fact that
it appears in 10 more S \ T documents on an absolute
scale. Keywords that appear in both sets with equal doc-
ument proportions can be placed in either list or both
lists.

In Step (c), we rank the keywords within lists, accord-
ing to how well they discriminate the two sets. Although
different scoring metrics could be used to accomplish
this task, we find that a metric based on the following
likelihood approach is quite effective (see Letham et al.
2013). For document d ∈ S at any point in using the
algorithm, let yd equal 1 if d ∈ T and 0 if d ∈ S \ T .
For each keyword k in either list, denote nk,T and n−k,T

as the number of documents in T that do and do not
match k, respectively, and nk,S\T and n−k,S\T as the
number of documents in set S \ T that do and do not
match k, respectively. Also define the marginal totals so
that nk,S = nk,T + nk,S\T and n−k,S = n−k,T + n−k,S\T

denote the total number of documents in S that do and
do not contain k, respectively, and NT = nk,T + n−k,T

and NS\T = nk,S\T + n−k,S\T denote the number of doc-
uments in T and S \ T , respectively.

This then leads to a convenient likelihood function
for the model we use to distinguish T from S \ T :

p(y1, ...yn | �k, �−k, k) = Bin(nk,T , nk,S\T | nk,S, �k)

× Bin(n−k,T , n−k,S\T | n−k,S, �−k),

where �k and �−k are probability parameters with priors

�k ∼ Beta(�T , �S\T )

�−k ∼ Beta(�T , �S\T )

with �T = �S\T = 1 in our implementation. We want to
then rank the keywords by how best they “fit” the actual
distribution of documents into T and S \ T by calculat-
ing their scores from the likelihood function. Since the
probability parameters �k and �−k are not of interest, we
marginalize over them to get

p(y1, . . . , yn | �T , �S\T , k) ∝
�(nk,T + �T )�(nk,S\T + �S\T )

�(nk,T + nk,S\T + �T + �S\T )

× �(NT − nk,T + �T )�(NS\T − nk,S\T + �S\T )

�(NT − nk,T + NS\T − nk,S\T + �T + �S\T )
.

We then calculate the value of the likelihood function
for each keyword in each list and rank them all from
highest to lowest likelihood.

Human Input and Human-Computer
Iteration

Our final step, prior to iterating, involves using human
input to choose items from the two keyword lists and to
build queries QT and Q RT . Following the third section,
we optimize so humans do what they are good at and com-
puterize what they are not. We present all the keywords,
so the humans do not need to recall anything, along with
computerized rankings to organize best guesses about
what may be of interest to them. Then the humans can
use their detailed contextual knowledge, unavailable to
our algorithm, to find different eddies of conversation
and meanings of concepts of interest not previously re-
called. This process of evaluating a list of words is of
course considerably faster and much more reliable than
asking humans to pull keywords out of thin air or thinner
memories.

The algorithm is unsupervised so that human users
can easily refine, improve, or totally redefine the concept
of interest, as the keyword lists inspire them to think of
new perspectives on the same material. Users may also
discover new directions that cause them to begin again
with a completely new reference set, or to add to the
existing reference set or reference query Q R .
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At this point, the user can iterate with the algorithm
in various ways to continue to adjust the partition of S
into T and S \ T and to refine or redefine the concepts of
interest. One way to iterate can be to simply update the
reference query with the new selected words and rerun the
algorithm. Another is for the user to designate specific
keywords or documents of interest or not of interest,
which gives the algorithm more information to update
the definitions of T and S \ T .

Evaluations

For our evaluations, we require a ground truth and a
data set with documents properly coded to the concept of
interest. Of course, the version of keyword selection we
are studying is an unsupervised task, and so the concept
initially chosen in real applications is not necessarily well
defined, may differ from user to user or application to
application, and can be refined or changed altogether
while using the algorithm; indeed, the ability of the user
to make these changes is an important strength of the
algorithm in practice.

Thus, to make ourselves vulnerable to being proven
wrong, we evaluate distinct parts of the algorithm in
specifically designed experiments. For example, we
consider a limited case with a specific and fixed concept
of interest. To do this, we leverage the usage of Twitter
hashtags as an explicit way users code their own concepts.
The 4/15/2013 Boston Marathon bombings example
used earlier was defined this way, with the hashtag
#bostonbombings. We then construct a data set composed
of three different sets of tweets. As the reference set,
we use 5,909 English-language tweets that contain
the hashtag #bostonbombings but not the word boston
posted April 15–18, 2013. The target set T we hope the
algorithm will identify contains 4,291 tweets during the
same time period that contains both #bostonbombings
and boston. We created the S \ T portion of the search
set with the 9,892 tweets that were posted April 12–13,
2013, before the bombings, that contain the word boston
but not #bostonbombings. The especially useful feature
of these data is that the bombings were a surprise event
that no one on social media was aware of ahead of time,
which makes the demarcation between T and S \ T
much clearer than it would normally be.

The task of identifying the target set is, of course,
straightforward with the keywords #bostonbombings and
boston, and so solely for this experiment we remove them
from the text of each of the tweets before our analysis. We
also do not use metadata indicating the date or time of
the tweet. This is therefore an artificial example, but one

TABLE 3 Top 25 Keywords in the Boston
Bombings Validation Example

Target Keywords Nontarget Keywords

peopl, thought,
prayforboston, prayer, fbi,
affect, arrest, cnn, pray,
video, obama, made,
bomb, bostonmarathon,
heart, injur, attack, releas,
victim, terrorist, sad, news,
sick, rip, investig

marathon, celtic, game,
miami, weekend heat,
tsarnaev, new, play, red
watertown, open, back,
sox, job mom, tonight,
win, fan, monday
bruin, reaction, liam,
tomorrow, payn

Note: The validation example is from the target T and nontarget
S \ T search set lists produced by a single noniterative run of the
algorithm, without human input.

constructed to make it possible to evaluate. The goal is
for human users selecting keywords with our algorithm
to be more accurate, more reliable, faster, and more cre-
ative than working on their own without it. Although
this is the relevant goal for a single human user, it is a
trivially easy standard for our algorithm to meet. To see
this, consider a limited special case of our algorithm with
keyword lists ordered randomly. Since we showed above
that humans are usually incapable of recalling more than
a small fraction of relevant keywords, but are very good
at recognizing important keywords put before them, even
randomly ordered keyword lists would still provide a great
deal of help.

We thus seek to evaluate only the quantitative fea-
tures of our algorithm here, and so we run the algo-
rithm once without iteration, and also without any hu-
man input or interaction. To simplify the analysis, and to
make replication of our results easier with fewer compu-
tational resources, we degrade our approach further by
using only two fast classifiers (Naive Bayes and Logit).
The estimated target set is designated as any document
that receives at least one classifier vote, with probability
above 0.5. We also preprocess the documents in stan-
dard ways, by stemming, and removing punctuation,
stop words, numbers, and words with fewer than three
characters.

Qualitative Summary

We evaluate this analysis in three ways, beginning in
this section with the qualitative summary in Table 3.
This table lists the top 25 (stemmed) keywords from the
target T and nontarget S \ T keyword lists produced
by a single run of the algorithm, without human input.
We can evaluate the algorithm informally by merely
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looking at the words and seeing what readers recognize.
It appears that most of the target keywords are closely
related to the bombing incident (e.g., #prayforboston,
thought[s], prayer, fbi, arrest, bomb, inure, attack, victim,
terrorist). A few words are clearly related but may be too
imprecise to be useful as keywords to select documents
(e.g., cnn, sad). Most nontarget keywords do a good job
of finding events related to Boston that are unrelated to
the bombings, largely related to sports teams (e.g., celtic,
game, miami, heat, red sox, bruin, win, fan). They also
include a few words that were apparently misclassified
and so should be in the target set (e.g., tsarnaev). The
word bostonmarathon in the target set and marathon in
the nontarget set do not clearly discriminate posts related
or unrelated to the bombings on their own to necessarily
be useful—although interestingly, the algorithm discov-
ered a pattern difficult for humans: that social media
posts happened to use the former word to describe the
bombings and the latter to describe the sporting event.5

Grouping and Ranking Keywords

Second, we more formally evaluate the likelihood model
used in our algorithm to group and rank keywords. Ide-
ally, the target set list should have keywords that perform
well on both recall and precision at the top, and the non-
target set list should have keywords that perform poorly
on both recall and precision.6 Figure 3 reports the cu-
mulative recall and precision for the first 100 keywords
in each list (introduced one at a time from left to right
in both graphs). The cumulative recall (left graph) and
precision (right graph) are running estimates, as we add
more and more terms into an “OR” Boolean query.

The key result in Figure 3 is that the target set line (in
teal) is usually well above the nontarget set line (in red) for
both recall and precision. In other words, our algorithm is
doing a good job separating the two lists, which provides
quantitative confirmation of the qualitative impression
from the words in Table 3.

By definition, cumulative recall increases as we add
more keywords. The fact that recall is not consistently
zero for the nontarget set list speaks to both the need for
human input as well as the nature of human language,

5Liam Payne was a 19-year-old singer inappropriately stopped by
authorities in an underage establishment, and the subject of many
social media posts. The word rip was, before removing punctuation
and stemming, R.I.P., which means “rest in peace.”

6The two common metrics we use are from the information re-
trieval literature. They include precision, the proportion of retrieved
documents from each keyword that contains documents of inter-
est, and recall, the proportion of all documents of interest that are
retrieved by the keyword.

where the same keywords can often be used in social
media posts with the opposite meanings—describing
concepts of interest and not of interest. The general
downward trend of the cumulative precision for the target
set list shows that the general ordering of the keywords
is also valid, with more precise words near the top of
the list.

Comparison to Human Users

For our final evaluation, we compare this single non-
iterative run of our algorithm (with no human in the
loop) with a purely human approach. We do this in two
ways. First, we compare the top 145 words from our tar-
get set keyword list with the 145 unique keywords that
the 43 undergraduates in our Boston Bombings experi-
ment came up with in the experiment described in the
third section. For this evaluation, we are therefore com-
paring the effort of 43 minds versus one single run of
the computer algorithm without any human input. This
is not a real comparison, of course, since in practice,
researchers are unlikely to be able to hire 43 research
assistants and would be able to use some human input
to improve the algorithm, but it gives a useful baseline
comparison.

Panels (a) and (b) in Figure 4 give density estimates
for the overall precision and recall of the 145 words chosen
by humans compared to the top 145 words from the target
set list from our algorithm. The results show that recall of
the algorithm is approximately the same as the collective
work of 43 humans. Put differently, both the one-step al-
gorithm and the humans come up with keywords of about
the same quality. Of course, we constrained the algorithm
to the same number of words as the 43 humans when, of
course, our algorithm would produce many more than
the 145 words shown in the graph.

To get a sense of the quality of the individual words in
this comparison, we see from Panel (b) that the precision
of the algorithm’s words is generally much higher than
the precision of words from the humans. When restricted
to 145 words, the algorithm produces the same level of
recall as the effort of 43 different humans combined, but
the words chosen by the algorithm contain much less
noise and are therefore of substantially higher quality
than human-only approaches.

Finally, we consider a more realistic comparison of
a (still limited) one-step special case version of our al-
gorithm without human input to one human research
assistant at a time. Individual humans choose only about
7–8 words, with no one of our 43 individuals choosing
more than 20. Panels (c) and (d) of Figure 4 give cumu-
lative recall and precision for our algorithm out to 50
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FIGURE 3 Cumulative Recall and Precision
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words (although it could of course keep going) compared
to each of our 43 human users. Individual undergraduate
cumulative recall appears as separate black lines in Panel
(c). The algorithm’s cumulative recall is better than most
of the human users until about 12 words are recalled, at
which point the algorithm’s performance soars well be-
yond any one of the human users. After 20 words, the
human users obviously have nothing to offer. The algo-
rithm’s precision (Panel d) is also better than most of the
human users in the entire range of human-recalled words,
but then continues out to 50 words in the graph without
losing much precision in the process.

Although our algorithm is clearly better than individ-
ual human users, using the algorithm with human input
as designed has the potential to be much better than either
alone.

Detecting the Language of
Censorship Evasion

In what became known as the “Wang Lijun incident”
in China, police chief of Chongqing Wang Lijun was
abruptly demoted from his job on February 2, 2012. Ru-
mors began circulating that Wang had fallen out of favor
with his boss, party chief of Chongqing and popular polit-
ical leader Bo Xilai. On February 6, 2012, Wang Lijun went
to the U.S. Consulate in Chengdu, possibly to seek asy-
lum, but after the consulate became surrounded by police,
Wang agreed to leave the consulate and was detained by
the Chinese government. During this time, rumors about

how the incident, perceived as treason by many in China,
would affect the political prospects of Bo Xilai spread vi-
rally across social media, culminating in Bo’s March 15
dismissal from his post. It was later revealed that Wang
had fled to the consulate because he had confronted Bo
that Bo and his wife, Gu Kailai, were connected to the
murder of British businessman Neil Heywood, who had
died in November 2011 in Chongqing. In the dramatic tri-
als of Wang, Gu, and Bo that followed, all were convicted
with lengthy prison sentences.

The Wang Lijun incident and Bo Xilai scandal were
some of the most dramatic and important political events
to occur in China in decades. Bo Xilai, son of famous
revolutionary Bo Yibo, had gained widespread popular
support in Chongqing for his crackdown on crime and
promotion of Maoist culture. He was also an ambitious
politician who was hoping to be promoted to higher lead-
ership roles within the Party. Because of the scale and
drama involved in the scandal, the Bo Xilai scandal was
of tremendous public interest and widely discussed, but
at the same time highly censored.

Social media posts that used the names “Bo Xilai,”
“Gu Kailai,” and “Wang Lijun” were censored across
much of the social media landscape by automated fil-
ters programmed in many social media websites. At the
same time, social media users, who know about these
filters, tried to write posts using creative rephrasings and
neologisms so their posts would slip past the filters but still
be understandable to general readers. Amid this linguis-
tic arms race between government-controlled computers
and the Chinese people, researchers trying to understand
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FIGURE 4 Comparing Recall and Precision for the Algorithm versus 43 Human Users
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Note: Panels (a) and (b) display the distribution of recall and precision for the 145 words from the humans and the top 145 words from the
algorithm. Panels (c) and (d) display cumulative recall and precision for each human (dotted line) versus the first 50 target set keywords
of the algorithm (solid line). Human keywords are in the order that humans thought of them.

this scandal have to scramble to keep up with these novel
words and rephrasings. Missing even one may cause them
to lose the thread of the conversation, bias their inferences,
or make finding posts of interest difficult or impossible.
We show how our algorithm can be used by researchers
to find these words and the posts of interest.

We began with words widely known to be used to
evade censorship for the reference set and those that were
more commonly used to describe the scandal in the search
set. Examples of a few of the words we discovered ap-

pear in the first column of Table 4. For example, the
reference set was composed of microblogs that contained
the word bxl (in English), the first letter of each sylla-
ble in Bo’s name, during the first half of 2012, and the
search set was the broader term to describe the scandal
“Chongqing incident” ( ). The target set picked
up a variety of words related to the event, including words
that netizens were using to evade censorship. For exam-
ple, , a homophone for Wang Lijun, appeared
within the top 100 of the list. Bu xing le ( , which
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TABLE 4 Words the Chinese Use to Evade Government Censors

Keyword Discovered Reference Set Search Set Found In Meaning

bxl target set homophone for Wang Lijun

bxl reference set bu xing le, has same initials as Bo Xilai

reference set “matron,” nickname for Wang Lijun

hwd gkl target set abbreviation for Neil Heywood’s last name

means “not OK,” but has the same initials as Bo Xilai)
appeared within the keyword list associated with the ref-
erence set BXL. Upon reading texts with these words, we
verified that both of these words were being used to evade
censorship.

Based on the new words we found to evade censor-
ship, we further revised the reference set and reran the
algorithm to search for other keywords. For example, we
used the homophone for Wang Lijun, , as the ref-

erence set and again “Chongqing incident”
as the search set. We discovered yet another nickname

for Wang Lijun, “matron” . Using Bo’s full
name to define the reference set and the ab-
breviation for Gu Kailai’s name, “gxl,” as the search set,
we also found the abbreviation for Neil Heywood’s name
in the keyword target set, “hwd.”

Of course, not every word on the list was being used
to evade censorship, since to be effective these words need
to be rare. For example, many of the words were closely
indicative of the scandal but not neologisms. However,
a human user knowledgeable about the region can easily
pick out the words that are being used to evade the cen-
sors from this longer list. Seeing the English abbreviation
“hwd” out of a list of mostly Chinese characters automat-
ically alerts the reader or researcher that it is being used as
shorthand for another word, and knowing the context (or
perusing the documents) would enable one to ascertain
whether it is being used to substitute for a censored word.
Similar patterns emerge in the purely Chinese words as
well. The power here comes from the combination of the
algorithm doing the “recalling” and the human doing the
recognition of what is relevant.

Prior Literature

Our algorithm is related to the information retrieval
literature and “query expansion” methods, including
algorithms that add or reweight keywords within search
queries to retrieve a more representative set of documents
(for a review, see Carpineto and Romano (2012), Rocchio
(1971), Xu and Croft (1996)). Our approach differs in two

important ways. First, most query expansion methods re-
trieve new keywords by stemming the original keyword,
looking for synonyms or co-occurrences, or finding re-
lated terms within the corpus defined by the original
keyword (Bai et al. 2005; Schütze and Pedersen 1997).
In contrast, our approach finds related keywords in ex-
ternal corpora that do not include the original keyword.
For example, thesauri will not reveal novel hashtags or
many of the terms in log tail search or those used to evade
censors.

While some query expansion methods use large ex-
ternal corpora, such as Wikipedia, to enhance keyword
retrieval (Weerkamp, Balog, and de Rijke 2012), our
method allows the user to define the external corpus with-
out any structured data aside from the sets R and S. We
thus rely on the user’s expertise to define the search and
reference sets from which new, related keywords will be
generated.

Second, current query expansion methods often try
to limit “topic drift” or are concerned with identify-
ing keywords that are too general (Mitra, Singhal, and
Buckley 1998). As a result, most of those methods im-
plicitly focus on maximizing the precision of the docu-
ments retrieved (making sure the documents retrieved
are all relevant), whereas we focus on both precision
and recall (making sure to retrieve as many of the rel-
evant documents as possible). Our method intention-
ally suggests both general and specific keywords and in-
cludes topic drift, not as a problem to be fixed but, at
times, as the subject of the study. We instead rely on the
user interaction phase of our model to refine the key-
word suggestions and avoid topic drift outside the user’s
interest.

Finally, most query expansion methods rely on prob-
abilistic models of the lexical properties of text (e.g.
Carpineto and Romano 2004; Voorhees 1994). Our ap-
proach uses ensembles of document classifiers to first
group documents that may be of interest to the user.
(A related approach is search results clustering [SRC],
except with user-specified corpora of documents; see
Carpineto et al. 2009 for a review.) It then retrieves key-
words that are likely to appear in this document group,
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but unlikely to appear in the rest of the search data set.
Despite the differences between our approach and the
current query expansion methods, our approach is ac-
tually a more general framework that can incorporate
many of the existing methods, as we describe in a later
section.

Concluding Remarks

The human-led, computer-assisted, iterative algorithm
we propose here learns from the mistakes made by au-
tomated classifiers, as well as the decisions of users in
interacting with the system. In applications, it regularly
produces lists of keywords that are intuitive, as well as
those that would have been unlikely to have been thought
of by a user working in isolation. Compared to a team of
43 human users, our algorithm has the same recall but far
better precision; the algorithm also dominates individual
human users on many dimensions. The algorithm discov-
ers keywords, and associated document sets, by mining
unstructured text, defined by the user, without requiring
structured data. The resulting statistical framework and
methods open up a range of applications for further anal-
yses. In addition to the examples in English and Chinese,
this algorithm has been useful in detecting Arabic dialects
(Smith 2016), and we see no reason why it would not work
on all human languages, but this would of course need to
be studied further.

Appendix A
Robustness to Target Set Size

We study here how robust our keyword list discovery is as
the target set size declines as a percentage of the search set.
In the section “Evaluations,” the (true) target set size was
about 30% of the entire search set. We now test a variety
of target set proportions from 1% to 40%. We create these
samples by setting the search set size to 10,000 and then
randomly drawing from the coded target and nontarget
sets to control the overall proportions.

Figure A1 gives cumulative recall and precision for
different target set sizes. Clearly, the general trends from
Figure 3 in the main text continue to hold. In addition,
recall goes up and is higher for smaller target set propor-
tions, which makes sense since fewer documents of inter-
est need to be retrieved. Precision also follows the same
downward sloping trend—higher for target sets that are a
larger proportion of the search set. With more documents
of interest and thus less noise in the search set, more high-
quality keywords exist, and more pertinent information
can be found with each retrieval relative to noise. Note
that for very small target sets, the precision drops off fast
after only a few words, which suggests smaller target sets in
general will have many fewer words that are of high qual-
ity. In practice, human users may choose to respond to
this situation by broadening the concept of interest if that
is an option or, to find a needle in a large textual haystack,
using small numbers of words to search document sets.

FIGURE A1 Cumulative Recall and Precision of Target Set Keywords for Different Target Set
Percentages
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Appendix B
Building Queries for Large Data Sets

In the section “Evaluations,” our validation example as-
sumed a single data set that was divided into a reference
and search set. The workflow in a single small data set is
relatively simple. We first separate the reference set from
the search set, run our algorithm, and then retrieve a list
of target set keywords and nontarget set keywords. The
user can then use the keywords for various applications,
one of which is building a comprehensive Boolean query
Q RT to retrieve a set of documents of interest. Q RT can
be built in this setup by simply taking the initial refer-
ence query Q R and adding target set keywords with OR
operators and/or nontarget set keywords with the NOT
and OR operators. For example, a query for the Boston
Bombings example (assuming that the entire data set is
given) could be “#bostonbombings OR (suspect OR fbi OR
#prayforboston) AND NOT (sox OR celtics OR bruins),”
where the words correspond to words from the reference
query, target keyword list, and nontarget keyword list,
respectively.

For large or potentially infinite data sources such as
social media, the workflow described above is not feasi-
ble for a couple of reasons. In cases where the data set
is large but finite, processing and running the algorithm
over the entire data set as a search set may be infeasible
computationally. For data sets of infinite size, there is no
single search set that can be defined to run the algorithm.
The user must define the search set manually via Boolean
query or other means, a decision which then highly affects
the results. We describe in more detail here a workflow al-
luded to in the section “Algorithm,” where the definition
of the search set may be incorporated into the workflow
and the algorithm run multiple times to define the com-
prehensive query Q RT . Consider the following steps to
the workflow:

1. Define reference set R.
2. Mine R for keywords K R to expand the query

or use any other query expansion method
available.

3. Choose one or more words from the query ex-
pansion to add to the query by either

(a) adding the query expansion words to the com-
prehensive query Q RT as is, or

(b) using the query expansion words to define a
search set S, running our algorithm, and then
adding additional words from our algorithm
to refine the query expansion words for the
comprehensive query Q RT .

4. Repeat Step 3 multiple times.

We demonstrate this workflow in an example of gath-
ering relevant tweets about the Paris terrorist attacks on
November 13, 2015. We collected a set of tweets be-
tween November 13 and November 15 with the hashtags
#parisattacks as our initial reference set. We show here a
very simplified version of the workflow for how to collect
keywords and use our algorithm to develop a compre-
hensive Boolean query to retrieve tweets about the Paris
attacks.

1. Use #parisattacks to define a reference set. (Q RT :
#parisattacks)

2. Use a simple query expansion method by sim-
ply mining the entire reference set for keywords
and rank them according to their document fre-
quency. Then scan the top 100 words for ideas
about expanding the query. We can alternatively
include any other query expansion method in
the literature here.

3. See the word #prayforparis in the expansion list.
Through substantive knowledge, recognize that
all tweets returned by #prayforparis are likely to
be relevant, so simply add it to the query, (Q RT :
#parisattacks OR #prayforparis)

4. See the word paris in the expansion list. We would
like to add it to the query, but not all documents
retrieved by paris will be relevant, so we need
to use the algorithm to subset further. Define
and retrieve a search set with paris but excluding
#parisattacks or #prayforparis.

5. Run the algorithm on the newly defined search
set and look at the top 100 words in each list.
See words that will help retrieve relevant posts
from the target set list (e.g., prayer, raid, abaaoud,
mastermind) and words that indicate nonrele-
vant posts from nontarget set list (e.g., climate,
change, conference). Add to the comprehensive
query. (Q RT : #parisattacks OR #prayforparis OR
(paris AND (prayer OR raid OR abaaoud OR
mastermind) AND NOT (climate OR change
OR conference)))

6. From the expansion list in Step 2, see the word
france and use it as a search set for investiga-
tion. Repeat the algorithm with the new search
set and find words that separate france into rel-
evant and irrelevant posts. (Q RT : #parisattacks
OR #prayforparis OR (paris AND (prayer OR
raid OR abaaoud OR mastermind) AND NOT
(climate OR change OR conference)) OR (france
AND (suspect OR victim OR attack OR terror-
ist) AND NOT (air OR england OR russia OR
benzema))

7. Repeat until satisfied.
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Through this workflow that involves both human and
algorithmic expertise, the user can work through a large
or infinite set of documents and retrieve the relevant doc-
uments of interest by building long and comprehensive
queries.
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